Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Immunol ; 13: 782198, 2022.
Article in English | MEDLINE | ID: covidwho-1902963

ABSTRACT

Misunderstanding temporal coincidence of adverse events during mass vaccination and invalid assessment of possible safety concerns have negative effects on immunization programs, leading to low immunization coverage. We conducted this systematic review and meta-analysis to identify the incidence rates of GBS that are temporally associated with viral vaccine administration but might not be attributable to the vaccines. By literature search in Embase and PubMed, we included 48 publications and 2,110,441,600 participants. The pooled incidence rate of GBS was 3.09 per million persons (95% confidence interval [CI]: 2.67 to 3.51) within six weeks of vaccination, equally 2.47 per 100,000 person-year (95%CI: 2.14 to 2.81). Subgroup analyses illustrated that the pooled rates were 2.77 per million persons (95%CI: 2.47 to 3.07) for individuals who received the influenza vaccine and 2.44 per million persons (95%CI: 0.97 to 3.91) for human papillomavirus (HPV) vaccines, respectively. Our findings evidence the GBS-associated safety of virus vaccines. We present a reference for the evaluation of post-vaccination GBS rates in mass immunization campaigns, including the SARS-CoV-2 vaccine.


Subject(s)
COVID-19 Vaccines/adverse effects , Guillain-Barre Syndrome/epidemiology , Influenza Vaccines/adverse effects , Mass Vaccination/adverse effects , Papillomavirus Vaccines/adverse effects , Alphapapillomavirus/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Papillomavirus Infections/prevention & control , Papillomavirus Vaccines/immunology , Population Surveillance , SARS-CoV-2/immunology
2.
J Theor Biol ; 538: 111039, 2022 04 07.
Article in English | MEDLINE | ID: covidwho-1654848

ABSTRACT

Based on the physicochemical indexes of 20 amino acids and the Hungarian algorithm, each amino acid was mapped into a vector. And, the protein sequence can be represented as time series in eleven-dimensional space. In addition, the DTW algorithm was applied to calculate the distance between two time series to compare the similarities of protein sequences. The validity and accuracy of this method was illustrated by similarity comparison of ND5 proteins of nine species. Furthermore, homology analysis of eleven ACE2 proteins, which included human, Malayan pangolin and six species of bats, confirmed that the human had shorter evolutionary distance from the pangolin than those bats. The phylogenetic tree of spike protein sequences of 36 coronaviruses, which were divided into five groups, Class I, Class II, Class III, SARS-CoVs and COVID-19, was constructed.


Subject(s)
COVID-19 , Chiroptera , Amino Acid Sequence , Animals , Humans , Phylogeny , SARS-CoV-2/genetics , Time Factors
3.
J Glob Health ; 11: 05017, 2021.
Article in English | MEDLINE | ID: covidwho-1335378

ABSTRACT

BACKGROUND: The antiviral therapy has been considered as an ordinary intervention for COVID-19 patients. However, the effectiveness of antiviral therapy is uncertain. This study was designed to determine the association between the antiviral therapy and in-hospital mortality among severe COVID-19 patients. METHODS: This study enrolled severe COVID-19 patients admitted to four designated hospitals in Wuhan, China. The use of antiviral treatments, demographics, laboratory variables, co-morbidities, complications, and other treatments were compared between survival and fatal cases. The association between antiviral agents and in-hospital mortality were analyzed. RESULTS: In total, 109 severe COVID-19 patients (mean age 65.43) were enrolled for analysis, among which, 61 (56.0%) patients were discharged alive, and 48 (44.0%) died during hospitalization. We found no association between lopinavir/ritonavir (LPV/r) treatment and the in-hospital mortality (odds ratio (OR) = 0.195, 95% confidence interval (CI) = 0.023-1.679). Besides, ribavirin (OR = 0.738, 95% CI = 0.344-1.582), oseltamivir (OR = 0.765, 95% CI = 0.349-1.636), and interferon-alpha (IFN-α) (OR = 0.371, 95% CI = 0.112-1.236) were not associated with the in-hospital mortality. However, arbidol monotherapy (OR = 5.027, 95% CI = 1.795-14.074) or the combination of arbidol and oseltamivir (OR = 5.900, 95% CI = 1.190-29.247) was associated with an increased in-hospital mortality. In addition, the multiple logistic regression identified a significant association between the use of arbidol and the in-hospital mortality (adjusted OR = 4.195, 95% CI = 1.221-14.408). CONCLUSIONS: Our findings indicated that LPV/r, IFN-α, ribavirin, or oseltamivir have no beneficial effects on the prognosis of severe COVID-19 patients, whereas the use of arbidol is associated with increased in-hospital mortality.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Hospital Mortality , Indoles , Aged , COVID-19/mortality , China/epidemiology , Hospital Mortality/trends , Humans , Indoles/adverse effects , Retrospective Studies , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL